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Abstract-For a two-dimensional anisotropic plate. the Green's function satisfying traction-free
boundary conditions around an elliptic hole is developed using Stroh's formalism. A combination
of this fUOl:tion and the boundary element method shows that it is the most effective approach for
solving hole problems. The generality of the present Green's function is shown by the broader
meaning of the following words. "Two-dimensional" includes not only in-plane but also anti­
plane problems and the problems where in-plane and anti-plane deformations couple each other.
"Anisotropic". which need not have any material symmetry restrictions. means that it Ctlvers the
s(llutions given in the literature. which only deal with orthotropic or monoclinic materials. "Elliptic"
includes the spt.'Cial case where the minor a~is of the ellipse tends to zero. i.e. the case of a Grilfith
crack. The accuracy of the numerical method presented is then veri lied by comparison with e1l.act
or accepted solutions I,f several e~al11ples. such as an inlinite or a finite plate with an elliplic hole
or ;1 crack under in-plane or anti-plane loading. The materials used are isotropic. ortholropie or
laminated composites. Finally. proolems where the hole boundary is not traction fn:c are solved.
such as rigid inclusions and pin-loaded holes.

INTRODl!CTION

Most practical structures contain holes as parts of basic design. However, such holes cause
high stress gradients, which have been studied by many investigators in the past. Analytic
solutions for inlinite anisotropic plates containing elliptic holes under uniform loading can
be found in Savin (1961) and Lekhnitskii (1968). Due to the dilliculties in satisfying the
houndary conditions for tinite plates, numerical methods such as the linite clement and
boundary element method arc now widely used. The basis of the boundary element method
is Green's function (or fundamental solution). The Green's function for infinite anisotropic
plates was presented by Green (1941), where the boundary condition along the elliptic hole
was not satisfied. In the work of Tarn and Chen (1987) and Kamel and Liaw (1989a,b),
the Green's function obtained by using Lekhnitskii's approach was improved in order to
satisfy the elliptic hole boundary condition. Nevertheless, the solutions obtained are valid
only for monoclinic materials and in-plane loading.

In this paper, the Green's function satisfying the traction-free condition on an elliptic
hole in an infinite anisotropic plate is derived in closed and compact form using Stroh's
formalism (Stroh. 1958; Hwu and Ting, 1989). The derivation is valid for general aniso­
tropic materials which need not have any material symmetry restrictions, The out-of-plane
components of displacements and stresses are generally nonzero in Stroh's formalism.
Hence the present solutions are valid not only for plane problems but also for anti-plane
problems and prohlcms whose in-plane and anti-plane deformations couple each other.
By letting the minor axis of the elliptic hole tend to zero, the Green's function for the
corresponding crack problems and its associated stress intensity factors are obtained
explicitly.

A boundary element method employing the Green's function derived in this paper is
used to analyze the stress distribution of finite plates containing traction-free elliptic holes.
The boundary conditions along the elliptic hole are satisfied by the Green's function so that
it is unnecessary to include the elliptic surface in the boundary integration. This explains
why the present method is more effective than other numerical schemes. This concept has
been widely used in the analysis of isotropic or anisotropic plates with cracks (Snyder and
Cruse, 1975; Cruse, 1978; Murakami. 1978; Clements and Haselgrove, 1983; Ang and
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Clements. 1986. 1987; Ang. 1987; Tan and Bigelow. 1988). Although the boundary­
Galerkin approach (Grannel and Dwyer. 1987) also satisfies the field equations a priori. it
remains to satisfy all the boundary conditions approximately including the elliptic hole or
cracks.

To show the generality and accuracy of the numerical procedure presented here.
comparisons are made with exact or accepted solutions of several examples such as an
infinite or a finite plate with an elliptic hole or a crack under in-plane or anti-plane loadings.
The materials used are isotropic. orthotropic or laminated composites. The elastic constants
for isotropic materials give rise to the degenerate case where some of the constants in the
Green's function are ill-defined. To employ the present Green's function for the degenerate
case. a small perturbation of the material constants is introduced.

We also examine problems where elliptic holes are filled with rigid inclusions or loaded
by pins. For the rigid inclusion problem. we employ Green's function satisfying zero
displacements on the boundary of the inclusion (assuming that there is symmetry such that
any relative rotation can be neglected) so that. as for the traction-free hole problem.
there is no need to perform integration over the boundary of the inclusion. By careful
superposition of stresses. the numerical procedure for the traction-free hole problem can
be used to solve the pin-loaded hole problem. Numerical results for various specific problems
are obtained.

GREEN'S FUNCTION FOR TRACTION-FREE HOLE PROBLEM

In a fixed rectangular coordina te system X,. i = 1.2.3. let II, and a;, be the displacement
and stress. respectively. The strain displacement elfuations. the stress- strain laws and the
equations or equilihriulll arc

( I )

(2)

(3)

where repeated indices imply summation. a comma stands for differentiation and the Ci,k'
arc clastic constants which arc assumed to be fully symmetric and positive definite. For
two-dimensional problems 11,. i = 1.2.3. can be assumed to depend on x, and x~ only.
Based on this assumption and the basic equations (I )-(3). the general solutions for II, and
a" can then be written as (Stroh. 1958; Hwu and Ting. 1989)

u = 2 Re { ±a.j~(:.)}.
• ~ I

(1,1 = -(P,.1.

q, = 2 Re {± b.j~(:.)}... , (4)

(5)

where Re denotes the real part of a complex number. and u and q, are 3 x I matrices whose
clements .1fe II, and cPl' i = I. 2. 3. (p, represents the stress function which can be used to
determine stresses according to (5).1.(:.) is an arbitrary function of the complex variable
=. (= X I +P.x~). the choice of which depends on the boundary conditions provided by the
given problems. The eigenvalues P. and the associated eigenvectors a•. b. are determined
by the elasticity constants C"k. (Hwu and Ting. 1989). Note that the solutions given in (4)
arc derived under the assumption that the P•• ~ = 1.2.3. arc distinct.

Considering an infinite anisotropic plate containing an elliptic hole under a con­
centrated force f applied at point x· = (xr.x~). as shown in Fig. I. the elasticity solution
of this problem will be used as a Green's function of the boundary element method (BEM).
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X,

Fig. I. An infinite anisotropic plate containing an elliptic hole under a concentrated force f applied
at point x· = (xr.xn

If the hole is assumed to be traction free. the boundary conditions can be written as

t", = t/J.n = 0 along the hole boundary.

f dc/J = f for any closed curve C enclosing the point x·.

a" ..... () at inlinity. (6)

where t", is the surl~tce tr'lction along the hole boundary of which the normal is m. The
equality between t", and t/J.n Was proved by Stroh (195M). where n is tangent to the boundary
Wig. I). The second equation of (6) comes from the force equilibrium around any closed
curve enclosing point x· and the usc of eqn (5).

To satisfy (6). the choice ofJ~(=,) becomes critical in the solution procedures. As in the
problem considered by Hwu and Ting (19M9). a mapping fUl1l.:tion which transforms an
ellipse into a circle will be used to satisfy (6)1' The second equation of (6) implies that t/J
must be a multi-valued function around the point x· ; however. its derivatives which are
related to the stresses should be single valued and approach zero when 1=1 ..... 00. The best
candidate for satisfying these conditions. the second and third eqns of (6), is the logarithmic
function. Hence. a possible general solution of displacements and stress functions can be
written as

I

U = 2 I Re {AFk(Z)qd.
k~O

where

and

t/J = 2 I Re {BFdZ)qd.
k-O

!O(=,) = log (C. -cn
J",(=.) = log (C; I -~n k = 1.2.3

(7)

(8)

(9)

(10)
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f., ., 2'-*+ I-*--a--p b-C" = "'2 V -2 2:

• a-ip.b '
(11 )

where:x = 1.2.3 and a, b are the length of the semi-axes of the ellipse, qk are 3 x I matrices
whose elements are unknown complex constants determined by the satisfaction of the
boundary conditions (6). Note that the additional terms1,(=.). I~(=.). 13(=.) are chosen in
order to satisfy the traction-free condition along the hole boundary. The overbar denotes
the complex conjugate.

To determine qk by using (6), we need to calculate fjlJI along the hole boundary of which
the contour is represented by

XI = 0 cos 1/1. X2 = bsin 1/1. (12)

In the above, 1/1 is related to 9, which is the angle directed from the xI-axis to the tangent
n. by

p cos 0= a sin 1/1, p sin 0 = -b cos 1/1,

where

, ,.. .1. h' 2 .1.Ir = 0- SIO' ¥' + -cos 'f'.

Using the chain rule. we have

where

( 13)

( 14)

(15)

i)z", O' 001/1 = -p(cos +P. SIO ),

oz", OZ",
-= I -=P.,
OXl 'OX2

along the hole boundary. Substituting the above results into (9) and (10), we obtain

3

FOJl =diag [c, C2 cll = L cklt>
k-I

FkJl = ekl, k = 1,2,3, (16)

where

-iei
'" (17)

Ck =p(e'''' -Ck*)

and

I, =[~
0

~l I, - [~
0

~l I, =[~
0

~l0 1 0 (18)

0 0 0
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I is the 3 x 3 unit matrix, By using (16), tPJI can easily be calculated from (7h, and the
boundary condition (6) I will be satisfied if we choose

(19)

The force equilibrium equation (6)~ and the requirement of single-valued displacement will
now provide

2 Re {iBqo} = f/27t,

2 Re {iAqo} = O. (20)

[n the above. (7) and the multi-valucdness of log (C,-C:') have been used. [t is noted that
log «(,- I_~~*) is single valued since (,- I is always located inside thc unit circle and ~k* is a
point outside the unit circle. To find qn from (20), we recall the orthogonality relations
among thc eigcnvectors (Stroh, 1958; Ting, 1988),

and ohtain

qn = A'f/27ti. (21 )

Suhstituting (19) and (21) into (7), the Green's function C.ln then he written cxplicitly as

(22)

wherc [m denotes the imaginary part of a complcx number.
The Green's function for an infinite anisotropic plate containing a crack of length 2a

can be obtained by letting b -+ 0 ~ in (22). Differentiating the stress function tP in (22) with
respect to x, and considering x~ = 0, x, > a, thc stresses 0',2 ahcad of the crack tip along
thc x I axis are obtained as

where

(23)

and

'* = I (_* + r-.·~-':"(~2)
I a -J 'V -'1 • (24)

(25)
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With the usual definition and use of (23), the stress intensity factors are given by

.,
= --- lm (B'I'(Z *)ATf1f

f- l •

Jrra

where

(26)

'I'(Z*) = diag {-II~*'
-"1

(27)

If the point force f is applied to the upper crack surface XI = e, eqn (26) becomes

_ I. I (a+e)1'2
K = --Srf+ -- -~ f.

2j;;1 2~ a-e (28)

where the identity S = i(2ABT-I) (Barnett and Lothe, 1973; Ting, 1988) has been used
and K is identical to the solution given by Wu (1989).

BOUND"RY ELEMENT METIIOD

I1l1u/lc!ary i/lt(qral ('(llll/till/l

If body forces arc omitted. the boundary integral equi.ltion is written as (Brebbia e/

al.• 19X4)

e,,(x*)UJ(X*)+ ( pt(x*, x)ul(x) dr(x) = ( U,~(X*, x)p,(x) Jr(x), (29)J,./. JB ./.

whcrc U,~(X*, x) and p,~(x*, x) arc, rcspectively, the displaccments and tractions in the j
direction at a point x corresponding to a unit point force acting in the i direction applied
at a point x* and D, L denote the contour of the outer and hole boundary. For a smooth
boundary e'l = ~<>'l' in which <>il is the Kronecker delta. For practical application, however,
e" together with the corresponding principal value can be indirectly computed by letting
IIJ = I (and hence PI = 0) in eqn (29).

foor the traction-free hole problem, we choose U,~ and PI~ in such a way that P/~ = 0 on
the elliptic boundary L. Then, by applying the boundary condition Pi = 0 on L, we find
that

( p,~(x*. X)IIJ(X) dr(x) = ( II,~(X*, x)p,(x) dr(x) = o.
J~ J~

(30)

Similarly. for the rigid inclusion problem, assuming that there is no relative rotation between
the matrix and inclusion, if U,~ = 0 on L, eqn (30) is also valid.

Linear clements arc used here to solve the boundary integral equation. A detailed
discussion of the numerical implementation of this element can be found in Brebbia et al.
(19X.J). The boundary Dis discretized into M clements with N nodes. foor a boundary with
/I corner nodes, J~f = N -/I because each corner node connects two different surfaces which
have two different tractions and should be represented by two nodes. In each node one of
the two variables (II, or p,) is known. By considering x* as boundary point. eqn (29) finally
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reduces to a system of 3N simultaneous linear algebraic equations. The integrals including
the one with a singular term are calculated using Gauss quadrature rules.

Once all the values of tractions and displacements on the boundary are determined,
the values of the stresses and displacements at any interior point can be calculated by using
(29) again, where cij = fJij' But now, X· denotes the interior point, u,(x). PJ(x) are all known
from previous calculations and u~, p~ are given by the Green's function. The displacements
at the interior point uJ(x·) are then obtained directly from (29). To find the internal stresses.
we firstly calculate uj.,(x·) by differentiating (29) with respect to x·, then apply (I) to get
the strains and (2) to get the stresses.

Examples
( I) A finite or an infinite plate with an elliptic hole

A uniform tension of 0'0 = 1 GPa is applied in X2 direction. The material constants of
the orthotropic plate are taken as

E 1 = It.8GPa, E2 = 5.9GPa, G'2 = 0.69 GPa. \'12 = 0.071,

where the fiber direction is denoted by I. The lamina angle IX is 90', where IX is measured
from the xI-axis to the fiber direction. Because of eqn (30), only the external boundary
needs to be discretized. An infinite plate containing a circular hole is simulated by defining
hla = I, 2al W = 0.01, HI W = 3 (Fig. 2). A very coarse mesh is employed in this case with
four elements on each edge. Therefore. 20 nodes for the entire plate are required. Results
for the hoop stress 0'/111 are shown in Table I. We observed that there is a very good agreement
between the analytic (Lekhnitskii, 1968) and computed solution by the boundary element
method.

The main concern in the following cases is the stress concentration I~tctor (SCF), which
is defined by O"HI/O'o at point A. The SCF is presented in Fig. 3 for a variety of hla ratios in
order to investigate the c1Tect of the shape of an elliptic hole on the stress concentration
factor. where 2al W = 0.2, III W = 3 and IX = 90". The results of Fig. 3 show that the larger
the hla ratio, the smaller the stress concentration factor, whil.:h is expected. The relation
between the SCF and lamina angle IX is shown in Fig. 4.

(2) A circular rigid inclusion in an infinite plate
The geometry, loading and material properties for this case are the same as for the

above problem except that the circular hole is replaced with a circular rigid inclusion.
Therefore, the boundary condition t/J.n = 0 is now replaced by u = 0 without considering
the relative rotation between the matrix and rigid inclusion due to the symmetry condition

fI

f-----W-----i

u.
Fig. 2. A finite plate containing an elliptic hole.
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Table 1. The hoop stress Goo on the boundary of a
circular hole in an infinite plate (simulated by

ba = 1, 2a, W = 0.01, H'W = 3).

8(Degree) Present Exact

0.0 5.466 5.453

15. 2.565 2.571

30. 0.962 0.964

45. 0.403 0.404

60. 0.070 0.069

75. -0.339 -0.340

90. -0.707 -0.707

of this case. The Green's function of this problem has a similar form to (22) except that
B- 1Dare now changed to A - IA. The results for the stresses arc compared with the exact
solutions (Lekhnitskii, 1968) and are shown in Table 2.

(3) A composite laminate with a center crack under uniform tension
The geometry and loading for this problem are as shown in Fig. 2 with h -+ 0 '.

11/ W = 3. Numerical results are obtained for three laminates: (90"),. (± 30)..
(0'/ ±45"/90"),. which are relevant to application to composite structures. The material
properties of each lamina are denoted by

E I = 114.8GPa. Ez = £., = I 1.72 GPa. G IZ = Gr., = G Z1 = 9.65 GPa.

VIZ = VI} = V2.1 = 0.21.

28.0 ,....----------------.

24.0

20.0

c...
U 16.0
f/)

t2.0

80

4.0 L~--.J'__ _..1____J._"""_...::r:~_~

o 0.4 0.8 1.2 16 2

b/a
Fig. 3. The effect of the shape of an elliptic hole on the stress concentration factor (SeF).
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10.0

gO

80

7.0

60

to.,
~ 5.0

~

4.0

30

2.0

10

0.0 .............._ ..............................-.........................................--'-..........

o w ~ ~ ~ ~ 00 m 00 00
ce(degrees)

Fig. 4. The relalion between the stress concentration factor (SCF) and the lamina angle IX.

To study the etTecls of the spt.'Cimen boundary. the results are presented using the stress­
intensity correction factor (F)

Figure 5 shows that the stress-intensity correction factors calculated by this method agree,
within ± 1%. wilh the values from Snyder and Cruse (1975).

(4) An or/I/O/ropi£" pla/e with Cl center crack under anti-plane loading
A mode III problem is now considered to show the generality of this method. An

infinite plate is simulated by defining 2tl/ W = 0.0 I in Fig. 6. The plate is sheared by a stress

Table 2. The stresses on thc boundary of a circular rigid inclusion in an infinitc platc (simulatcd by
hill = I. 2u/W =0.01. H/W = 3).

u•• /uo u.,/uo u,,/uo

~(Degree) Present Exact Present Exact Present Exact

0.0 0.038 0.04 O. O. 0.003 O.

15. 0.118 0.20 -0.299 -0.30 0.563 0.56

30. 0.336 0.34 -0.517 -0.52 0.698 0.70

45. 0.635 0.64 -0.597 -0.60 0.514 0.52

60. 0.934 0.94 -0.517 -0.52 0.269 0.27

75. 1.157 1.16 -0.292 -0.30 0.096 0.09

90. 1.233 1.24 O. O. 0.047 0.04
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2.1 ,.-----------------,
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1/
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I

I
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T-r-.......-T-i 1- /
/

/
~..

4'
~ ...

Snyder llnd
PresenlCruse (1m)

o (9O"}s

(oo/:450 /9O"}s

(:6O")s

II

12

13

1.5

17

19

16

18

14

2.0

10 l..--.k::::"1.-...J.._.L.-...J.._.L.-...J.._J-.-J.---J

o 01 0.2 03 0.4 0.5 0.6' 0.7 0.6 09 1

2a/W'

Fig. 5. The sln.:ss·intcnsity wrrcclion factor (F) fllr a center-crack tension spt."I:imen (HI W '" 3.0).

(fZl = ton -'=2 = ± ///2. For orthotropic materials, we take the lamina properties considered
in Example 3 and orient the fiber dire<.:tion to the x I-axis. The stress-intensity factor Kill
<.:akulated <.:onvcrges to 1.00lrJna, whi<.:h shows that it is not innuen<.:ed by material
properties for small cral:ks.

(5) An isotropic piait' with a r(qid lint' inclusion under uniform tl'tlsiOfl
Since the eigenvalues P., (l = I, 2, 3, arc repeated and equal to i for isotropic materials

(Lekhnitskii, 1968), eqn (4) is no longer truc. Howcver, the generality of the present method
can be extended by introducing a small perturbation in the values ofP. such asp, =0.9952i,
P2 = i, PI = 1.0048i. Similar to Example 2, the Grcen's function for rigid linc inclusions
should be revised by replacing 8 I Bwith A - IAand letting h -. 0 t • For an infinitc isotropic
plate subjected to a tensile loading (f perpcndicular to the line inhomogeneity (length 2a),
the mode I stress singularity coetlicient SI dcfined by Wang et al. (1985) is given as

../
-(1\:-1)(3-1\:)

SI = (f na ------
81\: '

(31 )

./ T /
/; ; ; ; ; ; ; ;; /

// / / / / /

/

Xz

/f-.a-J x
/

"'x3

W

./ .' ///////

T
fI/2

-r
H/2

1
'" '" '" '" '" , '" '" ,T

Fig. 6. A plate containing a crack under anti-plane shear loading (HI W '" I).
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Xz

x,

Fig. 7. The geometry of E~amples6 and 7 (H,ld = 2.5. H:/d = 7.5. WId = 5).

1715

where I.; = 3 - 4v for plane strain deformation. The present numerical solution. based upon
2a/W =0.01. v = 0.071 and the perturbation given above. converges to 0.022410'JltG.
which is almost identical to the exact solution given in (31).

(6) A finite platl..' with a pitl~/o",II..''' hok
A finite plate with a hole is shown in Fig. 7. which is subjected to a uniform tension

applied at .\'2 = -11 2, The material constants of the orthotropie plate are taken as

£, = 10GPa. £'2 = 10Gra, G12 = IO/3.3GPa, VIZ = 0.25.

A cosine normal load distribution is assumed here to simulate a pin-loaded hole (Chang 1..'(

al.• 1983; Vable anti Sikurskie. (988). The pressure around the upper half of the hole
boundury induced by u unit stress upplied in the X2 direction can then be expressed as

a'"'" = Pcos 0·.

Vabt" and
Present Sikarski" (1988)

• Pin-loaded hole

Traction-free hole

7.0

60

50

4.0

~
b

30

2.0

1.0

0.0
0 05 1.5 2 2.5

x,/d
Fig. 8. Normal stress (lTd along the xl·a~is.
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Table 3. The total force along the x {·axis.

Problem Present Vable(1988) Exact

6 5.004 4.993 5.000

7 5.012 4.937 5.000

where (J * is measured clockwise from the x ~ axis. m is the direction normal to hole boundary,
and Pis determined by the equilibrium condition that the total forces in the vertical direction
balance. i.e.

i
~!~ d tt

2 (Pcos~l.I*)-d9*=-Pd= IxW.
fl 2 4

From the above equation, P is given by 4W/ttd. The Green's function derived in this paper
is under the condition that the hole is free of traction. In order to solve the problem with
the load distribution described above, sUpI;:rposition of the following two problems is
employed. One is an intlnite plate with O'mm = (4W/1td) cos 0* applied on the upper half of
the hole boundary, which can be solved analytically (see the Appendix). The other is a finite
plate (Fig. 7) for which the loadings applied on the outer and hole boundaries are obtained
from those of the original problem minus the above one. Therefore. the loading on the hole
boundary is truction free so that it can be solved by the present boundary clement method.
The results for normal stress O'u along the Xl axis arc shown and compared in Fig. 8. The
results for the total force along the x, axis arc shown in Table 3.

(7) Cotll'ergetlcy (lllti accuracy
A sample problem dealing with a traction-free hole under uniuxial tension given in

Yahle and Sikurskie (1988), Fig. 7, is used to study the convergency and accuracy of the
present method. A uniform tension is applied at X2 = II, and -1/2, All the other boundaries
including the circular hole boundary arc traction free and the material properties arc the
same ,1S in Example 6. The clfect of varying N (the numher of nodes) on the stress
concentration factor is shown in Table 4. A good convergence rate is observed from N = 8
to N = 42. The results for normal stress (T ~~ along the positive x, axis arc shown in Fig. 8.
By static equilibrium the area under the curve shown in Fig. 8 represents half the total force
applied in the x~ direction, which is shown in Table 3.

CONCLUSIONS

The Green's function of an anisotropic plate containing an elliptic hole is obtained in
closed and compact form by using Stroh's formalism. The Green's function for the traction­
free hole problem is such that, in ilpplying the boundary clement method, discretization
around the boundary of the hole is avoided. This results in a saving of computer time and
storage. Moreover, discretization with relatively coarse meshes can achieve high accuracy.

Several examples such as isotropic, orthotropic or laminated composite plates with an
elliptic hole or a crack under in-plane or anti-plane loadings were considered, to show the
general applicability ofGreen's function presented in this paper. Accuracy and convergency

T<lbh: 4. The effect of varying N (the number of nodes) on the stress con­
centration factor.

N 8 10 12 14 18 24 32 42

SCF 2.917 3.282 3.368 3.404 3.413 3.434 3.461 3.466
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have been shown through comparison with the exact or accepted solutions given in the
literature. Additional examples are given for problems where the hole boundary is not
traction free. such as a rigid inclusion or pin-loaded hole. The former is accomplished by
using a Green's function satisfying the condition of zero displacement on the boundary of
the inclusion. By careful superposition of the linear stresses, the latter can be solved using
the numerical procedure for the traction-free hole problem.
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APPENDIX : ANALYTICAL SOLUTIONS FOR AN ANISOTROPIC PLATE WITII
AN ELLIPTIC OPENING SUBJECTED TO ARBITRARY LOADINGS

Any given arbitrary loadings applied on the hoi.: boundary can be .:ltpresscd by Fourier eltpansion as

r,

pt~ = Co + L (c, cos ky, +d, sin ky,).
0_1

where

SAS 27:1J-H

(AI)

(A2)
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and

C. HWl; and W, j, YES

(A3)

To satisfy the above boundary condition. the stress function", can be assumed as

F.

t/J=2Re(BF,,(Zlq,,:+2 L Re:BF,(Z)q,:.,.,

where

F,,(Z)=diag[log;,. log~;. log~,J.

F,(Z) = diag(;,'. ;:'. C,'],

(M)

(AS)

The traction I.. along the hole boundary can then be calculated by 1m = t/J.. , Differentiation with respect to n is
performed by using chain rule given in (15). To get a real form eJlpression. we replace the compleJl constant q. by

where g. and h, are real. Using the following three real matrices (Barnett and Lothe. 1973).

S = i(2t\B r -I). II == 2i,\,\r. K == -2iBRT
•

the traction t.. al,ml; the hole houndary is now ohtained as

"tm = - (st1:" l.b"l+ I k(STI:.k -l.h,) cos k./I + I:.k sin k.p:.
' ... 1

A comparison hetween (A I) and (AX) leads to

sts:"-I.h,, = --c".

The requirement of a single-valued displaeemcnt givcs

2 Re(iAtlnl '" 1IJ,\,,+Shn = o.

Combining (N)) and (A 10). wc obtain

For thc pin-loaded hole considered in EJlilmple 6,

fSinl/·1 fsinl/lCUS'Pl
I,,==pcoso·ru:)(}. =1'1 Si~:1/1 f' 0,;:;1/1,;:;)[,

= o. It"; 1/1 ~ 21t.

Frum (A1) and (A.') with (I = h == di2. we have

(A6)

(A7)

(AX)

(A'l)

(AIO)

(All)

(AI2)

k = odd.

= O. k = cven cJlcept 1.
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= ~:{-;+

[

0
dPd

4
= __ 8

41t k(4~k~)

k 0=: 2.

, k = odd.

= O. k = even e:<cept 2.

(AU)


