Int S Suitds Structures Vol 27 N800 13 pp. 17081719, 199) 0020-"a83 91 $3.00+ )
Printed in Great Britain ¢ 1991 Pergamon Press pic

GREEN’'S FUNCTIONS OF TWO-DIMENSIONAL
ANISOTROPIC PLATES CONTAINING AN
ELLIPTIC HOLE

CHyansiN Hwu and WeN J. YEN
Institute of Aeronautics and Astronautics. National Cheng Kung University,
Tainan, Taiwan 7010f, R.O.C.

(Received 10 March 1990 ; in revised form 6 July 1990)

Abstract—For a two-dimensional anisotropic plate, the Green's function satisfying traction-free
boundary conditions around an elliptic hole is developed using Stroh’s formalism. A combination
of this function and the boundary element method shows that it is the most effective approach for
solving hole problems. The generality of the present Green's function is shown by the broader
meaning of the following words. “Two-dimensional™ includes not only in-plane but also anti-
plane problems and the problems where in-plane and anti-plane deformations couple each other.
*Anisotropic™, which nced not have any material symmetry restrictions, means that it covers the
solutions given in the literature, which only deal with orthotropic or monoclinic materials. “Elliptic™
includes the special case where the minor axis of the ellipse tends to zero, Le. the case of a Grittith
crack. The accuracy of the numerical method presented is then verified by comparison with exact
or accepted solutions of several examples, such as an infinite or a finite plate with an elliptic hole
or a crack under in-plane or anti-planc loading. The materials used are isotropic. orthotropic or
laminated composites. Finally, problems where the hole boundary is not traction free are solved,
such as rigid inclusions and pin-loaded holes.

INTRODUCTION

Most practical structures contain holes as parts of basic design. However, such holes cause
high stress gradients, which have been studied by many investigators in the past. Analytic
solutions for infinite anisotropic plates containing clliptic holes under uniform loading can
be found in Savin (1961) and Lekhnitskii (1968). Duce to the difficultics in satistying the
boundary conditions for finite plates, numerical methods such as the finite clement and
boundary clement method are now widely used. The basis of the boundary element method
is Green's function (or fundamental solution). The Green's function for infinite anisotropic
plates was presented by Green (1941), where the boundary condition along the elliptic hole
was not satisfied. [n the work of Tarn and Chen (1987) and Kamel and Liaw (1989a,b),
the Green's function obtained by using Lekhnitskii's approach was improved in order to
satisfy the elliptic hole boundary condition. Nevertheless, the solutions obtained are valid
only for monoclinic materials and in-plane loading.

In this paper, the Green's function satisfying the traction-free condition on an elliptic
hole in an infinite anisotropic plate is derived in closed and compact form using Stroh’s
formalism (Stroh, 1958 ; Hwu and Ting, 1989). The derivation is valid for general aniso-
tropic materials which nced not have any material symmetry restrictions. The out-of-plane
components of displacements and stresses are generally nonzero in Stroh’s formalism.
Hence the present solutions are valid not only for plane problems but also for anti-plane
problems and problems whose in-plane and anti-plane deformations couple cach other.
By letting the minor axis of the elliptic hole tend to zero, the Green's function for the
corresponding crack problems and its associated stress intensity factors are obtained
explicitly.

A boundary element method employing the Green's function derived in this paper is
used to analyze the stress distribution of finite plates containing traction-free elliptic holes.
The boundary conditions along the elliptic hole are satisfied by the Green'’s function so that
it is unnecessary to include the elliptic surface in the boundary integration. This explains
why the present method is more effective than other numerical schemes. This concept has
been widely used in the analysis of isotropic or anisotropic plates with cracks (Snyder and
Cruse, 1975; Cruse, 1978 ; Murakami, 1978 ; Clements and Haselgrove, 1983; Ang and

1708



706 C. Hwt and W. J. YEN

Clements. 1986, 1987: Ang. 1987; Tan and Bigelow, 1988). Although the boundary-
Galerkin approach (Grannel and Dwyer, 1987) also satisfies the field equations a priori, it
remains to satisfy all the boundary conditions approximately including the elliptic hole or
cracks.

To show the generality and accuracy of the numerical procedure presented here.
comparisons are made with exact or accepted solutions of several examples such as an
infinite or a finite plate with an elliptic hole or a crack under in-plane or anti-plane loadings.
The materials used are isotropic. orthotropic or laminated composites. The elastic constants
for isotropic materials give rise to the degenerate case where some of the constants in the
Green's function are ill-defined. To employ the present Green's function for the degenerate
case, a small perturbation of the material constants is introduced.

We also examine problems where elliptic holes are filled with rigid inclusions or loaded
by pins. For the rigid inclusion problem. we employ Green's function satisfying zero
displacements on the boundary of the inclusion (assuming that there is symmetry such that
any relative rotation can be neglected) so that. as for the traction-free hole problem.
there is no need to perform integration over the boundary of the inclusion. By careful
superposition of stresses, the numerical procedure for the traction-free hole problem can
be used to solve the pin-loaded hole problem. Numerical results for various specific problems
are obtained.

GREEN'S FUNCTION FOR TRACTION-FREE HOLE PROBLEM
In a fixed rectangular coordinate system v, i = 1,2, 3, let «, and g, be the displacement
and stress, respectively, The strain displacement cquations, the stress-strain laws and the
cquiations of cquilibrium are

l:l/ = !‘(“1./ + ll/,:)v ( l )
(TI[ = ('uk.rl;ln v (2)
('I//u uk.,r/ = Ov (3)

where repeated indices imply summation, a comma stands for differentiation and the C,,
are clastic constants which arc assumed to be fully symmetric and positive definite. For
two-dimensional problems u,, i = 1,2,3, can be assumed to depend on x, and x, only.
Based on this assumption and the basic equations (1)-(3), the general solutions for «, and
o, cun then be written as (Stroh, 1958 ; Hwu and Ting, 1989)

3 3
u=2Re { 2. a,/;(:,)}. ¢ =2 RC{ ) b,/;(:.)}. )

ERN 21

g, = _(/)1,." g,y = ¢l.|' (5)

where Re denotes the real part of a complex number, and u and ¢ arc 3 x | matrices whose
elements arc u, and ¢,. i = 1, 2, 3. ¢, represents the stress function which can be used to
determine stresses according to (5). f,(z,) is an arbitrary function of the complex variable
2, (=x, 4+ p,x.), the choice of which depends on the boundary conditions provided by the
given problems. The eigenvalues p, and the associated eigenvectors a,, b, are determined
by the elasticity constants C,., (Hwu and Ting. 1989). Note that the solutions given in (4)
are derived under the assumption that the p,, a = 1, 2, 3, arc distinct.

Considering an infinitec anisotropic plate containing an elliptic hole under a con-
centrated force f applied at point x* = (x1, x¥), as shown in Fig. 1, the elasticity solution
of this problem will be used as a Green's function of the boundary element method (BEM).
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Fig. 1. An infinite anisotropic plate containing an elliptic hole under a concentrated force f applied
at point x* = (x, x¥).

If the hole is assumed to be traction free, the boundary conditions can be written as

t, = ¢, = 0 along the hole boundary,

j dep = f tor any closed curve C enclosing the point x*,
-

o, — 0 atinfinity, (6)

where t,, is the surface traction along the hole boundiry of which the normal is m. The
cquality between t, and ¢, was proved by Stroh (1958), where nis tangent to the boundary
(Fig. 1). The second equation of (6) comes from the force equilibrium around any closed
curve enclosing point x* and the use of eyn (5).

To satisty (6). the choice of f(z,) becomes critical in the solution procedures. As in the
problem considered by Hwu and Ting (1989), a mapping function which transforms an
ellipse into a circle will be used to satisty (6),. The second equation of (6) implics that ¢
must be a multi-valued function around the point x* ; however, its derivatives which are
related to the stresses should be single valued and approach zero when 2| - oo. The best
candidate for satisfying these conditions, the second and third eqns of (6), is the logarithmic
function. Hencee, a possible general solution of displacements and stress functions can be
written as

= Z {AFA(Z)q,}.
= Z ¢ {BF.(Z)q:], )
where
A=[a, a, a)}, B=[b, b, by (8)
Fu(Z) =diag [/i(z)). [fi(z2). fil)) k=0.1,2,3 9)
and

Jo(z2) = log (¢, = (3.
Sz =log (7' =C8). k=1,2.3 (10)
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where x = 1,2, 3 and a, b are the length of the semi-axes of the ellipse, g, are 3 x | matrices
whose elements are unknown complex constants determined by the satisfaction of the
boundary conditions (6). Note that the additional terms f,(z,). f2(z,). f3(z,) are chosen in
order to satisfy the traction-free condition along the hole boundary. The overbar denotes
the complex conjugate.

To determine g, by using (6), we need to calculate ¢, along the hole boundary of which
the contour is represented by

Xy =acosy, x,=bsiny. (12)

In the above, ¥ is related to 8, which is the angle directed from the x,-axis to the tangent
n, by

pcos@ =asiny, psind= —bcosy, (13)
where
pP=a’sin® Y +b*cos? . (14)

Using the chain rule, we have

of  of o, oy | ez, dx, dz, 0x, (15)
dn 3, o 0z, [ éx, dn " dxy on ]
where
;Y -/ ) ax, dxy .
p_— 222 ¥ pulin ISR 22 s § —_ ==
[,=¢", ) ie', ) plcos 8+ p, sin 0), o cos 0, o sin @,
oz, - 0z, _
ax, 6x2—p"
along the hole boundary. Substituting the above results into (9) and (10), we obtain
3
Fo, =diagc, ¢ )] = Z cele,
kw}
Fk.n = 5&[, k = 1,2,3, (16)
where
~iet
. A an
T )
and
1 00 0 0 0 0 00
L=10 0 0}, I,={0 1| O, ILi={0 0 O (18)
0 0 0 0 0 0 0 0 1
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[ is the 3 x 3 unit matrix. By using (16), ¢, can easily be calculated from (7),, and the
boundary condition (6), will be satisfied if we choose

@ = —B 'Blg,. k=1,2.3. (19)

The force equilibrium equation (6)- and the requirement of single-valued displacement will
now provide

2 Re {iBq,} = /2r,
2 Re {iAq,y} = 0. (20)

In the above. (7) and the multi-vatuedness of log ({,—¥) have been used. It is noted that
log ({; ' =C#) is single valued since {7 ' is always located inside the unit circle and {* is a
point outside the unit circle. To find q, from (20), we recall the orthogonality relations
among the eigenvectors (Stroh, 1958 ; Ting. 1988),

AR
AT BjlA A

Qo = A'f/2xi. 2n

and obtain

Substituting (19) and (21) into (7), the Green’s function can then be written explicitly as
[ . (.  erity e T O
u=_Im{AF (Z)A"}f+ . Y Im {AF(Z)B 'BLA"L,
k|

| . - -
= nlm {BF,(Z)A"}f + - Y Im {BF,(Z)B~'BIL A"}, (22)
k=1

where Im denotes the imaginary part of a complex number.

The Green's function for an infinite anisotropic plate containing a crack of length 24
can be obtained by letting b — 0* in (22). Differentiating the stress function ¢ in (22) with
respect to x, and considering x, = 0, x, > a, the stresses g,, ahead of the crack tip along
the x, axis are obtained as

)b,a','} f, (23)

=i by (s
7 na 4 S\ (-0
where

L | Ty . ! WY

.= E:('\" +\/.t7—a'). o= ‘;(-'H'V h=ad) (24)

and

0, =1{01.02.01}". 2%5)
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With the usual definition and use of (23), the stress intensity factors are given by

Ky
K=1K, =1§rp,/2rr(x,—a)o'z
Klll
2
= — Im [B¥(Z*A" 1. (26)
Vna
where
‘I’(Z“)—dia{ ! ‘ ! } 27)
R TP S e A e

If the point force f is applied to the upper crack surface x, = ¢, eqn (26) becomes

- l I 12
K= STr+ <"+C) [, (28)

2/ na 2/ ta \4—¢C

where the identity S = i(2AB"—1) (Barnett and Lothe, 1973 Ting, 1988) has been used
and K is identical to the solution given by Wu (1989).

BOUNDARY ELEMENT METHOD

Boundary integral equation
If body forces are omitted, the boundary integral equation is written as (Brebbia et
al., 1984)

phx* xu(x)dl(x) = J ut(x*, x)p,(x) dl(x), (29)
i

By

¢, (XM (x*) + f

H

where wl(x*, x) and pi(x*, x) are, respectively, the displacements and tractions in the j
direction at a point x corresponding to a unit point force acting in the i direction applied
at a point x* and B, L denote the contour of the outer and hole boundary. For a smooth
boundary ¢,; = 13, in which 3, is the Kronecker delta. For practical application, however,
¢,; together with the corresponding principal value can be indirectly computed by letting
u, = | (and hence p; = 0) in eqn (29).

For the traction-free hole problem, we choose u} and p in such a way that p5 =0 on
the elliptic boundary L. Then, by applying the boundary condition p; = 0 on L, we find
that

Jp,‘,‘(x"‘, X, (x) dIN(x) = j wh(x*, x)p,(x)dIM(x) = 0. (30)

Similarly, for the rigid inclusion problem, assuming that there is no relative rotation between
the matrix and inclusion, if 4} = 0 on L, eqn (30) is also valid.

Lincar elements are used here to solve the boundary integral equation. A detailed
discussion of the numerical implementation of this element can be found in Brebbia et al.
(1984). The boundary B is discretized into M elements with V nodes. For a boundary with
n corner nodes, M = N —n because each corner node connects two different surfaces which
have two different tractions and should be represented by two nodes. In each node one of
the two variables (i, or p) is known. By considering x* as boundary point. eqn (29) finally
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reduces to a system of 3N simultaneous linear algebraic equations. The integrals including
the one with a singular term are calculated using Gauss quadrature rules.

Once all the values of tractions and displacements on the boundary are determined,
the values of the stresses and displacements at any interior point can be calculated by using
(29) again, where ¢; = §,;;. But now, x* denotes the interior point, u,(x). p,(x) are all known
from previous calculations and u}, p3 are given by the Green'’s function. The displacements
at the interior point u,(x*) are then obtained directly from (29). To find the internal stresses,
we firstly calculate u;,(x*) by differentiating (29) with respect to x*, then apply (1) to get
the strains and (2) to get the stresses.

Examples
(1) A finite or an infinite plate with an elliptic hole

A uniform tension of 6, = 1 GPa is applied in x; direction. The material constants of
the orthotropic plate are taken as

E, =11.8GPa, E,=59GPa, G,; =069GPa, v,; =0.07l,

where the fiber direction is denoted by 1. The lamina angle a is 90°, where a is measured
from the x,-axis to the fiber direction. Because of eqn (30), only the external boundary
needs to be discretized. An infinite plate containing a circular hole is simulated by defining
bla=1,2a/W = 0.01, H'W = 3 (Fig. 2). A very coarse mesh is employed in this case with
four elements on each edge. Therefore, 20 nodes for the entire plate are required. Results
for the hoop stress a4 are shown in Table |. We observed that there is a very good agreement
between the analytic (Lekhnitskii, 1968) and computed solution by the boundary element
method.

The main concern in the following cases is the stress concentration factor (SCF), which
is defined by awfa, at point A. The SCF is presented in Fig. 3 for a varicty of h/a ratios in
order to investigate the effect of the shape of an clliptic hole on the stress concentration
factor, where 2a/W = 0.2, H/W = 3 and a = 90". The results of Fig. 3 show that the larger
the b/a ratio, the smaller the stress concentration factor, which is expected. The relation
between the SCF and lamina angle a is shown in Fig. 4.

(2) A circular rigid inclusion in an infinite plate

The geometry, loading and material propertics for this case are the same as for the
above problem except that the circular hole is replaced with a circular rigid inclusion.
Therefore, the boundary condition ¢, = 0 is now replaced by u = 0 without considering
the relative rotation between the matrix and rigid inclusion due to the symmetry condition

NERNEN
|
TTTTT]

Fig. 2. A finite plate containing an elliptic hole.
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Table 1. The hoop stress g,, on the boundary of a
circular hole in an infinite plate (simulated by
ba=1,2a W =00l HW=3)

6(Degree) Present Exact
0.0 5.466 5.453
15. 2.565 2.571
30. 0.962 0.964
45. 0.403 0.404
60. 0.070 0.069
75. -0.339 -0.340
90. -0.707 -0.707

of this case. The Green’s function of this problem has a similar form to (22) except that
B~ 'B are now changed to A~ 'A. The results for the stresses are compared with the exact
solutions (Lekhnitskii, 1968) and are shown in Table 2.

(3) A composite luminate with a center crack under uniform tension

The geometry and loading for this problem are as shown in Fig. 2 with 5 - 0",
H/W = 3. Numerical results are obtained for three laminates: (907),. (£30)),,
(0°/+45°/90"),, which are rclevant to application to composite structures. The material
propertics of cach lamina are denoted by

El =ll4.8Gpil, E2=E‘=II7ZGP3. G|2=G|)=GI}=9.6SGPQ,

Vi V)3 =V = 02'

28.0

240 |

200 |

16.0 |-

SCF

120

80 r—

4.0 1 1 L
o 04 0.8 12 18 2

ba

Fig. 3. The effect of the shape of an elliptic hole on the stress concentration factor (SCF).
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Fig. 4. The relation between the stress concentration factor (SCF) and the lamina angle a.
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To study the effects of the specimen boundary, the results are presented using the stress-
intensity correction factor (F)

K
Fe=-—'_

o/ na
Figure 5 shows that the stress-intensity correction factors calculated by this method agree,
within + 1%, with the values from Snyder and Cruse (1975).

(4) An orthotropic plate with a center crack under anti-plane loading
A mode Il problem is now considered to show the generality of this method. An
infinite plate is simulated by defining 24/ W = 0.01 in Fig. 6. The plate is sheared by a stress

Table 2. The stresses on the boundary of a circular rigid inclusion in an infinite plate (simulated by

bla=1,2a/W =001 HIW =13).

orr/00 are/00 999/00
P(Degree)| Present Exact Present Exact Present Exact

0.0 0.038 0.04 0. 0. 0.003 0.

15. 0.118 0.20 -0.299 -0.30 0.563 0.56
30. 0.336 0.34 -0.517 -0.52 0.698 0.70
45. 0.635 0.64 -0.597 -0.60 0.514 0.52
60. 0.934 0.94 -0.517 -0.52 0.269 0.27
75. 1.157 1.16 -0.292 -0.30 0.096 0.09
90. 1.233 1.24 0. 0. 0.047 0.04
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Fig. 5. The stress-intensity coreection fuctor (F) for a center-crack tension specimen (H/ W = 3.0),

a4y = ton X, = + /2. For orthotropic materials, we take the lamina propertics considered
in Example 3 and orient the fiber direction to the x-axis. The stress-intensity factor Ky,
caleulated converges to l.()(”t\/ na, which shows that it is sot influenced by material
propertics for small cracks.

(5) An isotropic plate with a rigid tine inclusion under uniform tension

Since the cigenvalues p,, 2 = 1, 2, 3, are repeated and equal to i for isotropic materials
{Lekhnitskii, 1968), eqn {4) is no longer true. However, the generality of the present method
can be extended by introducing a small perturbation in the values of p, such as p, = 0.9952i,
Py =1, py = 1.0048i. Similar to Example 2, the Green's function for rigid line inclusions
should be revised by replacing B 'B with A “'A and letting b — 0*. For an infinite isotropic
plate subjected to a tensile loading o perpendicular to the line inhomogeneity (length 24),
the mode [ stress singularity coctlicient §; defined by Wang et al. (1985) is given as

k=13 =k)
S —a\/nu B s (&1))]

// T //
P AN A A A A A Al
RO el e ey

i -
H2
) l-ad %
H/' ’/
/2 f Y
W
4 /
P // e Va /v,,/ 7
F ARV ARV S R S B B & 4
T

Fig. 6. A plate containing a crack under anti-plane shear loading (H/W = 1),
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Fig. 7. The geometry of Examples 6 and 7 (H/d = 2.5, Hyfd = 1.5, Wid = 5).

where k = 3 —4v for plane strain deformation. The present numerical solution, based upon
2a/W = 0.01, v=0.071 and the perturbation given above, converges to 0.0224l6\/ na,
which is almost identical to the exact solution given in (31).

(6) A finite plate with a pin-loaded hole
A finite plate with a hole is shown in Fig. 7, which is subjected to a uniform tension
applied at x, = — I7,, The material constants of the orthotropic plate are taken as

E,=10GPa, E,=10GPa, G, =10/33GPa, v,; =0.25.
A cosine normal load distribution is assumed here to simulate a pin-loaded hole (Chang ¢r
al., 1983 Vable and Sikarskic, 1988). The pressure around the upper half of the hole

boundary induced by a unit stress applied in the x, direction can then be expressed as

O = Pcos 0%,

70
60
Vable and
Present gyarskie (1986)
50 b e Pin~loaded hole
---------- s  Traction-free hole
40 b
§
o
30 ¢
20
10 |
00 1 A S
4] 05 2 25

t 15
z,/d

Fig. 8. Normal stress (¢,,) along the x,-axis.
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Table 3. The total force along the x-axis.

Problem Present Vable {(1988) Exact

6 5.004 4.993 5.000

7 5.012 4.937 5.000

where 6* is measured clockwise from the x; axis. m is the direction normal to hole boundary,
and Pis determined by the equilibrium condition that the total forces in the vertical direction
balance, i.e.

’s

f: F IR R d
2[ (Pcos? 6%)5d9* = gPd= I x W,

f

From the above equation, P is given by 4W/nd. The Green's function derived in this paper
is under the condition that the hole is free of traction. In order to solve the problem with
the load distribution described above, superposition of the following two problems is
employed. One is an infinite plate with 6,,, = (4W/nd) cos 0* applied on the upper half of
the hole boundary, which can be solved analytically (see the Appendix). The other is a finite
plate (Fig. 7) for which the loadings applicd on the outer and hole boundaries are obtained
from those of the original problem minus the above one. Therefore, the loading on the hole
boundary is traction free so that it can be solved by the present boundary clement method.
The results for normal stress o, along the x, axis are shown and compared in Fig. 8. The
results for the total foree along the x, axis are shown in Table 3.

(7y Convergency und accuracy

A sample problem dealing with a traction-free hole under uniaxial tension given in
Vable and Sikarskic (1988), Fig. 7, is used to study the convergency and accuracy of the
present method. A uniform tension is applied at x, = #, and — H,. Al the other boundarics
including the circular hole boundary are traction free and the material propertics are the
same as in Example 6. The effect of varying N (the number of nodes) on the stress
concentration factor is shown in Table 4. A good convergence rate is observed from N = 8
to N = 42, The results for normal stress .. along the positive x, axis are shown in Fig. 8.
By static equilibrium the arca under the curve shown in Fig. 8 represents half the total force
applied in the x, direction, which is shown in Table 3.

CONCLUSIONS

The Green's function of an anisotropic plate containing an elliptic hole is obtained in
closed and compact form by using Stroh’s formalism. The Green's function for the traction-
free hole problem is such that, in applying the boundary clement method, discretization
around the boundary of the hole is avoided. This results in a saving of computer time and
storage. Morcover, discretization with relatively coarse meshes can achieve high accuracy.

Several examples such as isotropic, orthotropic or laminated composite plates with an
clliptic hole or a crack under in-plane or anti-planc loadings were considered, to show the
general applicability of Green's function presented in this paper. Accuracy and convergency

Table 4. The effect of varying ¥ (the number of nodes) on the stress con-
centration factor.

N 8 10 12 14 18 24 32 42

S CF |2.917 |3.282 |3.368 |3.404 |{3.413 |3.434 |3.461 |3.466
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have been shown through comparison with the exact or accepted solutions given in the
literature. Additional examples are given for problems where the hole boundary is not
traction free, such as a rigid inclusion or pin-loaded hole. The former is accomplished by
using a Green’s function satisfying the condition of zero displacement on the boundary of
the inclusion. By careful superposition of the linear stresses, the latter can be solved using
the numerical procedure for the traction-free hole problem.
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APPENDIX: ANALYTICAL SOLUTIONS FOR AN ANISOTROPIC PLATE WITH
AN ELLIPTIC OPENING SUBJECTED TO ARBITRARY LOADINGS

Any given arbitrary loadings applied on the hole boundary can be expressed by Fourier expansion its

Plo=cot Y (c, cos ki +d, sin ki), (Al)
ke
where
l L4
Co = I J‘ Pt dy,
l L]
= ; pt,, cos ky dy,
J pt., sin ky dy, (A2)
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pi=d sing+bcosT .

To satisfy the above boundary condition, the stress function ¢ can be assumed as
¢ = 2Re [BF,(Z)q,)+2 ¥ Re !BF.(Z)q,).
kowmt

where

Fo(Z) = diagflog J,. log{.. log{.).
Fu(Z) = diag[{7%. S35 7

(A3

(Ad4)

(A%

The traction t,, along the hole boundary can then be calculated by t,, = ¢,. Differentiation with respect to # is
performed by using chain rule given in (15). To get a real form expression, we replace the complex constant q, by

G = ATg+B™h,, k=012, %G,

where g, and h, are real, Using the following three real matrices (Barnett and Lothe, 1973),

S = i{(2AB"—1). H =2AAT, K = —2iBBT,

the traction t,, along the hole boundary is now obtained as

Pla = —(STRa~Lh)+ T &[S ~Lhy) cos ki + gz, sinkip ).

L]
A comparison between (A1) and (AR) leads to

STKN ~Lh, = ~¢,.

S'g -Lh "e
Shu-th = e
1
ﬂn‘—'l';dn. k=12, oL,

The requirement of u single-valued displucement gives
2 ReliAq,! = Hg, +Sh, = 0.
Combining (A9) und (A10), we obtuin
g, =STe,. h, = He,,

H

Re =

i
kd“' hg=kL S o-e) k=024 w.

For the pin-toaded hole considered in Example 6,

sin (¢ sin ¢ cos ﬂ

1, = Pcos#*Scos 0%y = P< sin'y f 0Ly s,

0 0
=ﬂ‘ nsdlSZn.

From (A2) and (A3) witha = b = d/2, we have

=10, k = evenexcept 2,

(A6)

(AT)

(A8}

(A9)

{AlY

(AL

{Al2)



Green's functions of anisotropic plates

dp 0
= = am =2
4r = k
0
D )‘
dp
d= ¢ 8 . k=odd
Tl k(=K |

0

=0. k =evenexcept 2,

(Al3)



